Memory-enhanced Decoder for Neural Machine Translation

نویسندگان

  • Mingxuan Wang
  • Zhengdong Lu
  • Hang Li
  • Qun Liu
چکیده

We propose to enhance the RNN decoder in a neural machine translator (NMT) with external memory, as a natural but powerful extension to the state in the decoding RNN. This memory-enhanced RNN decoder is called MEMDEC. At each time during decoding, MEMDEC will read from this memory and write to this memory once, both with content-based addressing. Unlike the unbounded memory in previous work(Bahdanau et al., 2014) to store the representation of source sentence, the memory in MEMDEC is a matrix with predetermined size designed to better capture the information important for the decoding process at each time step. Our empirical study on Chinese-English translation shows that it can improve by 4.8 BLEU upon Groundhog and 5.3 BLEU upon on Moses, yielding the best performance achieved with the same training set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Translation System Based on a Monotone Decoder

In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...

متن کامل

Translating Phrases in Neural Machine Translation

Phrases play an important role in natural language understanding and machine translation (Sag et al., 2002; Villavicencio et al., 2005). However, it is difficult to integrate them into current neural machine translation (NMT) which reads and generates sentences word by word. In this work, we propose a method to translate phrases in NMT by integrating a phrase memory storing target phrases from ...

متن کامل

A Multilayer Convolutional Encoder-Decoder Neural Network for Grammatical Error Correction

We improve automatic correction of grammatical, orthographic, and collocation errors in text using a multilayer convolutional encoder-decoder neural network. The network is initialized with embeddings that make use of character Ngram information to better suit this task. When evaluated on common benchmark test data sets (CoNLL-2014 and JFLEG), our model substantially outperforms all prior neura...

متن کامل

On the Properties of Neural Machine Translation: Encoder-Decoder Approaches

Neural machine translation is a relatively new approach to statistical machine translation based purely on neural networks. The neural machine translation models often consist of an encoder and a decoder. The encoder extracts a fixed-length representation from a variable-length input sentence, and the decoder generates a correct translation from this representation. In this paper, we focus on a...

متن کامل

Neural Machine Translation with External Phrase Memory

In this paper, we propose phraseNet, a neural machine translator with a phrase memory which stores phrase pairs in symbolic form, mined from corpus or specified by human experts. For any given source sentence, phraseNet scans the phrase memory to determine the candidate phrase pairs and integrates tagging information in the representation of source sentence accordingly. The decoder utilizes a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016